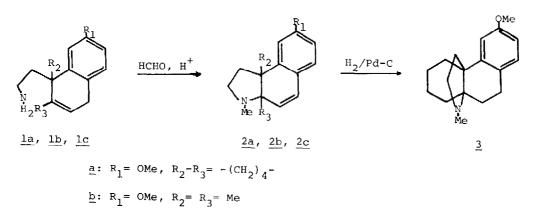
A NOVEL SYNTHESIS OF HASUBANAN SKELETON

Shunsaku Shiotani* and Tadashi Kometani Department of Chemistry, Toyama Technical College Hongo 13, Toyama 930, Japan

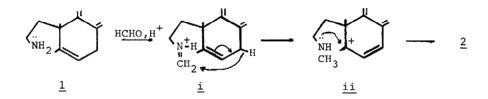
(Received in Japan 8 January 1976; received in UK for publication 28 January 1976)

Conversion of morphinan skeleton to hasubana¹ and synthesis of hasubanantype alkaloids from β -tetralone derivatives² have been reported by several workers. In the course of our investigation on the synthesis of homomorphinans,³ we found a novel synthesis of hasubanan skeleton.


Treatment of 4a-(2-aminoethyl)-6-methoxy-1,2,3,4,4a,9-hexahydrophenanthrene $(\underline{1a})^4$ with HCHO in HCO₂H (or in CH₃CO₂H)¹afforded an olefinic compound <u>2a</u> (an oil of bp 150-160° (0.07 mmHg)), C₁₈H₂₃NO, N.W. 269 (mass spectrum^{*2}: M⁺ 269), in 90% yield.

UV $(\lambda_{\text{max}}^{\text{EtOH}} 215 \text{ nm} (\log \varepsilon: 4.36), 273 \text{ nm} (\log \varepsilon: 4.12)), \text{NMR}^{*2}$ (§ 2.30 (s, 3H, NMe), 3.80 (s, 3H, OMe), 5.73; 6.42 (AB-type q, $\underline{J} = 10.0 \text{ Hz}$, 2H, olefinic H), 6.63 (double d, $\underline{J} = 2.5 \text{ Hz}$, $\underline{J}' = 8.0 \text{ Hz}$, 1H); 6.95 (d, $\underline{J} = 2.5 \text{ Hz}$, 1H); 7.02 (d, $\underline{J} =$ 8.0 Hz, 1H) three aromatic protons) and mass spectra (m/e 169 (M⁺), 226 (M-43), 215 (M-54), 214 (M-55), 213 (M-56), 212 (M-57)), and elemental analysis of the picrate, mp 181.5-185° (from MeOH) (Anal. Calcd. for $C_{18}H_{23}NO^{*}C_{6}H_{3}N_{3}O_{7}$: C, 57.83; H, 5.26; N, 11.24. Found: C, 57.69; H, 5.37; N, 10.99.), suggested the compound 2a to be d1-9,10-dehydro-3-methoxy-N-methylhasubanan. Catalytic hydrogenation of 2a over Pd/C in MeOH-HC1 gave d1-3-methoxy-N-methyhasubanan <u>3</u> as a colorless oil of bp 145-150° (0.06 mmHg), which was characterized as its picrate, mp 194-198° (from MeOH) (Anal. Calcd. for $C_{18}H_{25}NO^{*}C_{6}H_{3}N_{3}O_{7}$: C, 57.59; H, 5.64; N, 11.20 Found: C, 57.52; H, 5.63; N, 11.10.). The racemic compound 3 and 3-methoxy-N-methylhasubanan¹c derived from naturally occuring thebaine were identical in terms of their IR spectra (in $CHCl_3$).

Similarly, reactions of 1,2-dimethyl-1-(2-aminoethyl)-7-methoxy- $(\underline{1b})^{*3}$ and 1,2-dimethyl-1-(aminoethyl)-1,4-dihydronaphthalene $(\underline{1c})^{*3}$ with HCHO in HCO_2H (or in CH_3CO_2H)^{*1} gave the corresponding benz[e]indole compounds $\underline{2b}$ and $\underline{2c}$, respectively.


<u>2b</u>: bp 150-155° (0.25 mmHg); $C_{16}H_{21}NO$, M.W. 243 (mass spectrum M⁺: 243); UV λ_{max}^{EtOH} 214.5 mm (log ε : 4.43), 271.5 mm (log ε : 4.21); NMR & 0.96 (s, 3H, C-Me), 1.37 (s, 3H, C-Me), 2.39 (s, 3H, NMe), 3.80 (s, 3H, OMe), 5.75; 6.38 (AB-type q, $\underline{J} = 10.0$ Hz, 2H, olefinic H), 6.65 (double d, $\underline{J} = 2.5$ Hz, $\underline{J}' = 8.0$ Hz, 1H); 6.96 (d, $\underline{J} =$ 2.5 Hz, 1H); 7.00 (d, $\underline{J} = 8.0$ Hz, 1H) three aromatic protons: mass spectrum m/e 243 (M⁺), 228 (M-15), 213 (M-30). Ficrate: mp 170-175° (from MeOH) (Anal. Calcd. for $C_{16}H_{21}NO \cdot C_{6}H_{3}N_{3}O_{7}$: C, 55.93; H, 5.12; N, 11.86. Found: C, 56.23; H, 5.12; N, 11.48.).

<u>2c</u>: bp 110-120° (0.2 mmHg); $C_{15}H_{19}N$, M.W. 213 (mass spectrum M⁺: 213); UV λ_{max}^{EtOH} 212 nm (log ε : 4.33), 217 nm (log ε : 4.33), 222 nm (shoulder) (log ε : 4.15), 259 nm (log ε : 3.86); NMF & 0.94 (s, 3H, C-Me), 1.37 (s, 3H, C-Me), 3.37 (s, 3H, NMe), 5.83; 6.37 (ABtype q, $\underline{J} = 10.0$ Hz, 2H, olefinic H); mass spectrum m/e 213 (M⁺), 198 (M-15), 183 (M-30).

 $\underline{c}: R_1 = H, R_2 = R_3 = Me$

This unusual intramolecular amination may resemble to Sommelet reaction⁵ and is believed to involve hydride-ion transfer as follows: The conjugate acid of azomethine \underline{i} initially formed would pull out the hydrogen activated by benzylic and allylic systems to form an intermediary carbonium ion \underline{ii} which would cyclize to give the compound $\underline{2}$.

This interesting amination may have considerable synthetic importance. Applications to the similar allylic systems and further observations relative to the reaction mechanism will be presented in later papers.

<u>Acknowledgement</u> The authors are deeply indebted to Dr. Y. Sawa and Dr. S. Maeda of Shionogi and Co., Ltd. for the identification of compound <u>3</u> with 3methoxy-N-methylhasubanan.

FOOTNOTES

- *1 Reactions in CH₃CO₂H gave less yields.
- *2 Mass spectra were recorded on a JEOL JMS-01SG mass spectrometer. All NMR spectra were taken on a JEOL PMX-60 spectrometer at 60 MHz in CDCl₃, using TMS as an internal standard.
- *3 Compounds <u>lb</u> and <u>lc</u> were prepared from 2,2-dimethyl-7-methoxy-3,4-dihydrol(2H)-naphthalenone and 2,2-dimethyl-3,4-dihydro-l(2H)-naphthalenone, respectively, by the method similar to that for compound <u>la</u> reported by Moncovic.⁴

REFERENCES

- (a) S. okuda, S. Yamaguchi and K. Tsuda, <u>Chem. Pharm. Bull.</u>, <u>13</u>, 1092 (1965).
 (b) R.M. Allen and G.W. Kirby, <u>J. Chem. Soc</u>. (<u>Perkin I</u>), <u>1973</u>, 363.
 - (c) Y. Sawa, <u>Japan Patent</u> (Shionogi and Co., Ltd.) 7121,632 (<u>Chem. Abst.</u>, <u>75</u>, 129658y (1971)); and personal communication.
- 2) (a) M. Tomita, M. Kitano and T. Ibuka, Tetrahedron Letters, 1968, 339
 - (b) Y. Inubushi, T. Ibuka and K. Tanaka, Yūki Goseikagaku Kyokaishi, <u>30th</u> <u>anniv</u>. <u>issue</u>, 98 (1972).
- 3) S. Shiotani, J. Org. Chem. 40, 2033 (1975).
- I. Monkovic, T.T. Conway, H. Wong, Y.G. Perron, I.J. Pachter and B. Belleau, J. Am. Chem. Soc., 95, 947 (1973).
- 5) S.J. Angyal in "Organic Reactions", Vol. 8, R. Adams, Ed., John Wiley & Sons, Inc., N.Y., 1954, pp 199-201.